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Technical Note 

Energy Storage in Polymer Laminate Structures – 

Ageing and Diagnostic Approaches for Life Validation 

INTRODUCTION 

This is the first time that energy discharge 

capacitor technology capable of graceful 

ageing has been demonstrated at these en-

ergy levels. 

When a capacitor is selected to perform 

properly in an electronic circuit, its characteris-

tics are optimized to provide the designer with a 

well-defined level of reliability for the compo-

nent throughout the design lifetime of the circuit 

[l-5].  Fig. 1 shows a number of the more im-

portant technical factors that influence the ca-

pacitor designer's choice of geometry, connec-

tions, and materials [3, 5, 6].  The selection of a 

capacitor design requires matching available 

capacitor characteristics and parameters to the 

application needs.  In addition to the basic ca-

pacitance value and voltage rating, specifying 

all the characteristics allows the supplier to pro-

vide the most cost-effective capacitor for the 

given application.  
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The fundamental design parameters are con-

trolled to a large degree by environmental fac-

tors, such as temperature range, voltage, wave-

shape, pulse repetition rate (rep-rate) and duty 

cycle.  Essentially all these environmental fac-

tors affect the life expectancy of the capacitor, 

as shown schematically in Fig. 1 [2-14].  

RECENT ADVANCES IN POLYMER 

LAMINATE ENERGY STORAGE CA-

PACITOR TECHNOLOGY  

This preliminary study of polymer laminate 

structures reports on the ageing issues related 

to the performance of large, cost-effective, high 

energy density, multikilojoule energy storage 

capacitors that have recently been developed 

for high-energy pulsed power conditioning ap-

plications.  In this work, a new class of graceful-

ageing capacitors has been developed primarily 
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for energy discharge applications, such as elec-

trically energized lasers, electromagnetic guns 

and launchers, and dc power distribution bus fil-

tering.  In such systems the energy is either re-

leased from the capacitor in times ranging from 

tens of microseconds to milliseconds, or the ac 

ripple components in filtering operations are at 

frequencies up to a few tens of kilohertz.  

The performance, reliability, and operational 

constraints of the capacitors are discussed, and 

information is presented concerning the effects 

of various parameters on the life of the capaci-

tor.  

BACKGROUND 

The need for graceful-ageing, polymer-laminate 

pulsed capacitors that deliver energy over time 

periods of submilliseconds through near dc, as 

opposed to microseconds or less, for numerous 

power electronics applications has spurred the 

development of large metallized electrode-

pulsed capacitors.  These capacitors differ radi-

cally in several significant ways from capacitors 

that use discrete aluminum foil electrodes.  The 

information offered here is drawn from applied 

research that has been successfully undertaken 

by the authors over the past decade, primarily 

at CDE, Inc., on polymer laminates that 

comprise new types of large metallized pulsed 

energy discharge capacitors in the voltage 

range of 2 kV to 22 kV up to 100 kJ, with 

volumetric energy densities increasing up to 

nominally 20 Joules per cubic inch or 2.5 

MJ/m3.  

Fig. 1  Illustrates schematically a number of  the more 

important  technical design factors that  inf luence the 
capacitor designer's choice of  geometry, connect ions, 
and materials.  

DESIGN LIFE CHARACTERISTICS 

This new class of graceful-aging energy dis-

charge capacitors is technologically founded on 

the factors summarized below: 

1. The fractional area Iess per unit dc on-

time (often referred to as the time held

at full charge voltage, before energy dis-

charge takes place) for small area lami-

nates is nearly constant [15-20].  In ad-

dition, this has been shown to scale to

very large areas, as found in multi-

kilojoule energy storage capacitors; fur-

thermore, the fractional capacitance loss

per dc on-time or number of charge-
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discharge cycles is constant to within 

very small bounds [21, 22]. 

2. The question of the ageing rate is a mat-

ter of discussion, and work by MacDon-

ald et al. clearly shows the importance

of conductivity in impregnants as a con-

trol of clearing rates [23].  The model

developed shows that the breakdown

voltage and time-to-breakdown is a

function of:

• Temperature

• Solution pH

• Anion activity

• Applied voltage.

The following observations can be made [23]: 

For cases of interest to designers of high power 

electronics systems, all the voltage is likely ap-

plied across the film because of the rapid 

charge injection into the impregnant, whose 

conductivity is always significantly higher than 

that of the insulating polymeric film [24].  

For high voltage situations, as the voltage is ap-

plied to the laminate structure, several break-

down sites can arise initially in a few seconds; 

however, continued growth in sites depends 

upon the total time of the application of voltage 

and voltage fraction division across the insulat-

ing film and the semi-conductive fluid [23].  Now 

if most of the voltage is not dropped across the 

film/solution interface as is generally the case, a 

unity growth rate of breakdown sites per second 

is assured.  

3. The distribution of the times-to-breakdown

is very sensitive to the conductivity of the

fluid.  The positive results obtained through

the introduction of low concentrations of

conductive dopants into impregnants, well-

 known to the power transformer industry 

for many years as stabilizers, are consis-

 tent with the fundamental observations 

made in the MacDonald study [23]. 

OBSERVATION ON NEW  

TECHNOLOGIES FOR GRACEFUL-

AGEING ENERGY STORAGE   

CAPACITORS 

Capacitor dielectrics for wound capacitors are 

thin, ranging from a few microns to a few hun-

dred microns.  In a large capacitor, this trans-

lates to a very large surface area.  One major 

drawback of foil electrode capacitors is that the 

capacitor will have failed if any part of the die-

lectric breaks down.  When a foil capacitor suf-

fers a dielectric breakdown, the electrodes be-

come connected through a low impedance con-

nection at the point where the fault occurred.  At 

this point, the part of the capacitor where the 

fault occurred is normally a short circuit and is 

unable to accept a charge.  In a multi-series 

section capacitor, the shorting of one of the 
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series sections will result in the remaining sec-

tions operating at a higher stress.  

This problem does not exist for self-healing, 

metallized electrode capacitors.  With a self-

clearing electrode, a fault in the dielectric will 

result in the thin metallized electrode in the im-

mediate area of the fault being vaporized or 

turned from a metal conductor into a metal ox-

ide insulator [24-33].  Because of this, these ca-

pacitors can be designed to operate at the aver-

age breakdown strength of the insulating dielec-

tric, rather than at the minimum breakdown 

strength, as is required with foil capacitors [23].  

Large capacitors with self clearing electrodes 

survive dielectric faults that number in the hun-

dreds of thousands with the only visible evi-

dence being a small loss of capacitance [30].  

METALLIZED POLYMER F ILM 

CAPACITORS  

Fig. 2 is a typical metallized polypropylene ca-

pacitor winding cross-section after a "clearing" 

event has taken place.  The capacitor's elec-

trode is deposited on the dielectric prior to wind-

ing the capacitor.  The electrode is extremely 

thin.  In order to get any significant current out 

of a capacitor, an electrical connection must be 

made to the entire edge of the electrode.  This 

area is identified as the end connection in the 

figures.  Here, the edge of the electrode is 

connected to the "end spray."  In order to make 

sure that there is a significant amount of elec-

trode is exposed to the "endspray," the end of 

the electrode is offset.  This offset is referred to 

as the "stagger" in the winding.  

When the electrode is deposited on the dielec-

tric, there is one area that is left unmetallized.  

This insulating area is identified in Fig. 2 as the 

"margin."  This is done so that neither electrode 

will touch both end-sprayed areas of the capaci-

tor, shorting out the windings.  One electrode is 

connected to one side and the other electrode 

will connect to the opposite "end spray.” 

Fig. 2  Typical metallized polypropylene capacitor 
winding cross-
tak en place.  The capacitor's electrode is deposited on 
the dielectric  prior to winding the capacitor and the 
current -carrying electrodes are explic it ly made ex-
tremely thin in order to enhance the c learing process 
both locally and throughout  the capacitor  

THE "SELF -CLEARING" PROCESS -  

GRACEFUL AGEING  
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If a fault should occur in the dielectric, current 

will flow from one end-sprayed connection, 

through one electrode, through the fault, out the 

opposite electrode and to the opposite end-

sprayed termination.  The current in the area of 

the fault will attempt to go through a metal con-

ductor so thin that it is optically translucent.  

The amount of current that can go through this 

thin electrode is very limited.  The electrode in 

the immediate area of the fault will be blown 

away, acting much like a fuse, and the current 

will be safely interrupted.  Once the fault has 

been cleared, as shown in Fig. 2, the capacitor 

will continue to function, with the only measura-

ble damage being a small loss of capacitance.  

Metallized electrode capacitors have proved to 

be extremely consistent capacitors that can be 

designed at high energy densities, for cycle-

lives up to 50,000 shots, without running into 

the infantile failure mode problem that has 

plagued solid aluminum foil capacitors.  These 

new capacitors are designed to age gracefully, 

having no observed single point of failure - cou-

pled with a known, predictable ageing rate.  

When a fault occurs in such a capacitor, the 

electrode is cleared away through vaporization 

or oxidation before any significant current can 

flow into the fault site.  This characteristic al-

lows the capacitors to go through tens of thou-

sands of cycles before the capacitor capaci-

tance is substantially reduced (say, by 5% or 

so).  Capacitor performance assessments for 

two commercially available classes of high 

energy density metallized film capacitors show 

that the maximum volumetric energy densities 

currently practical are close to 2.5 megajoules 

per cubic meter [21]. 

Fig. 3  Cumulat ive ageing rate of  capacitance reduc-

t ion for mult ik ilojoule c lass metallized capacitors as a 
funct ion of  the number of  charge-discharge cycles  

This is the first time that energy discharge ca-

pacitor technology capable of graceful ageing 

has been demonstrated at these energy levels.  

The ageing mode of these new capacitors is 

one of a slow decrease in capacitance due to 

the clearings that are occurring within the ca-

pacitor, resulting in a decreased metallic elec-

trode area and hence a decline in capacitance.  

After the capacitor loses about 5% of its capaci-

tance, the loss of capacitance-per-shot acceler-

ates.  Also, at between 5 to 10% loss in capaci-

tance, sufficient gas (generated by the clear-

ings) normally will have accumulated inside the 

case so as to make case swelling noticeable.  

For this reason, a 5% capacitance loss has 
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been chosen as the normal end of design life 

for this class of capacitor.  

A Weibull hazard analysis was undertaken in 

this work on test data from 162 high energy 

density metallized electrode capacitors after an 

accumulation of 1,133,421 shots.  The ageing 

rate to this 5% total capacitance loss point aver-

aged a <2.5 x 107 fractional change in capaci-

tance, ∆C/C, per charge-discharge cycle, with a 

coefficient of fit of 0.9666.  The data support the 

observation of very few infantile failures, along 

with an extremely predictable graceful ageing 

rate for this technology.  

Fig. 3 illustrates the cumulative ageing rate of 

capacitance reduction for multikilojoule class 

metallized capacitors as a function of the num-

ber of charge-discharge cycles.  The rate is 

quite small up through 1,000 cycles, with a 

rapid reduction in capacitance by about 10% 

per shot at 100,000 shots; more recent designs 

show a 0.16% loss per 1,000 shots.  

THE EFFECT OF STRESS VARIA-

TIONS ON PERFORMANCE  

The relationship between life/ageing rate and 

the dielectric in a capacitor is usually expressed 

in terms of a power law where the change in life 

will be equal to the inverse of the change in 

stress raised to some power.  In the case of 

these new types of capacitors, test data show a 

15th power ageing rate dependence upon the 

ratio of charging voltage to the single shot volt-

age (i.e., the single shot voltage is the charging 

voltage at which only one useful energy dis-

charge pulse is obtained from the capacitor).  

Fig. 4 Life multiplication factor as a percent of rated dc voltage 

This is a very steep dependence compared with 

prior energy discharge capacitor technologies, 

resulting in negligible infant mortality, as well as 

allowing operation very close to the single cy-

cle-life voltage, while preserving reasonable 

ageing rates at high reliabilities.  Fig. 4 illus-

trates the life multiplication factor as a percent 

of rated dc voltage, clearly showing the drastic 

reductions to be anticipated in operating this 

class of capacitor even slightly over the design 

rating.  The "rated dc voltage" is the dc sustain-

ing voltage that yields the manufacturer's de-

sign life for the capacitors, generally at a nomi-

nal temperature of 20°C.  This happens be-

cause with metallization, defects are being 
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continuously cleared during actual operation.  

This all takes place during operation at nearly 

the intrinsic withstand voltage of the thin insulat-

ing films that are actually storing the desired 

electrostatic energy [19-21].  

Operating the capacitors below 80% of rated 

voltage results in very long cycle-life, dominated 

by thermal ageing - a predictable effect.  Low 

level testing of equipment can be done for ex-

tended periods of time with minimal, if any; con-

sumption of life of the capacitors [21, 22].  

PEAK CURRENT ISSUES 

The peak current capability of a typical 1995 

design, 16 kV; 50 kJ, 0.7 J/g, 10,000 shot life 

energy discharge capacitor is:  

Design peak current 

  40,000 amps  

Design limit for full life operation  

100,000 amps  

Fault capacity with minor degradation 

200,000 amps  

Crowbarring this capacitor with a peak current 

in excess of 400,000 amps will cause the type 

of damage described in the above paragraph.  

A 200,000 amp discharge will normally result in 

a measurable, but slight, degradation.  The ca-

pacitor will perform to specifications if the peak 

current is kept below 40,000 amps 

Fig. 5 shows the timeline of increasing energy density in energy 

discharge capacitors starting from the early 1960s. 

THE FUTURE 

Fig. 5 shows the timeline of increasing energy 

density in energy discharge capacitors, starting 

from the early 1960s [23-25].  Metallized tech-

nology capacitors from U.S. industry have been 

in the field for several years, at energy densities 

of 0.5 - 1.5 KJ/Kg [21, 25].  
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