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Abstract ! Large-can aluminum electrolytic capaci-
tors are widely used as bus capacitors in variable-speed
drives, UPS systems and inverter power systems.  Accu-
rate thermal modeling of the capacitor’s internal tem-
perature is needed to predict life, and this is a challenge
because of the anisotropic nature of the capacitor wind-
ing and the complexity of the thermal coupling between
the winding and the capacitor case. This paper trans-
lates analytical models for heat flow in bus capacitors
into an equivalent three-loop, seven-resistor, lumped-pa-
rameter thermal circuit model. This paper presents the
results of a Finite-Element Analysis (FEA)-based par-
tial differential equation solution and the results of the
three-loop thermal circuit model. The latter model is the
basis for an operating temperature and expected life-
time Java applet which enables power-system designers
to accurately predict capacitor operating temperature
and expected life from operating conditions.  Operating
conditions permitted as inputs include applied voltage,
ambient air temperature, air speed, thermal resistance
of any heatsink attached, and capacitor characteristics
like capacitance, ESR and case size.

I. INTRODUCTION

The useful life of an aluminum electrolytic capacitor
is related to temperature exponentially, approximately
doubling for each 10 ºC the capacitor’s core tempera-
ture is reduced [1]. The temperature rise of the core is
directly proportional to the core-to-ambient thermal re-
sistance, and this paper models this thermal resistance
for various capacitor construction techniques. Results
are adapted for use in a new, lumped-parameter model
suitable for use in a spreadsheet or a Java applet.

This paper focuses on modeling computergrade, or
screw terminal, capacitors. However, the concepts can
be applied to other aluminum electrolytic capacitor con-
structions, such as snapmount, radial, and axial capaci-
tors.

An aluminum electrolytic capacitor is generally com-
prised of a cylindrical winding of aluminum anode and
cathode foils separated by papers impregnated with a
liquid electrolyte, usually based on ethylene glycol. See
Fig. 1. The anode and cathode foils are made of alumi-
num, and the foils are usually highly etched. There is a
thin coating of aluminum oxide on the surface of the
anode. The anode and cathode foils are contacted by
aluminum tabs that are extended from the winding.
These tabs are attached to aluminum terminals in a poly-
meric top. The wet winding is sealed into an aluminum
can.

Analytical and FEA models have been developed and
recently published by one of the authors of the present
paper, and the reader is referred to [2]. The present pa-
per focuses on the embodiment of these models into a
lumped-parameter circuit model and a corresponding
Java applet.

Fig. 1.  Typical screw terminal capacitor constructions:
pitch (left) and pitchless (right).
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II. THE 7R THERMAL CIRCUIT MODEL

From recently developed thermal models [2] we find
that the hot spot is generally in the top center of the
winding. This hot spot is thermally isolated from the
polymer top due to the low thermal conductivity of the
top. The aluminum tabs have a high thermal conductiv-
ity, but due to their thin, narrow, and long dimensions,
and the usual thermal isolation of the terminals, the tabs/
terminals are generally not conducive to heat transfer.
Thermal conduction within the winding occurs readily
in the axial direction and somewhat less in the radial
direction, due to the fact that the thermal conductivity is
much larger in the axial direction than in the radial di-
rection. This anisotropism occurs because the papers
are effectively in parallel in the axial direction but in
series in the radial direction, and the conductivity of the
foil is nearly 1,000 times than that of the papers, even
when the papers are wet with electrolyte.

The radial heat flow from the winding to the can is
inhibited by a poor thermal path of either pitch or wet
air. On the other hand, the axial thermal path from the
bottom of the winding to the can bottom can be quite
good, especially when an extended cathode construc-
tion is used instead of the more common wet paper and/
or pitch. Therefore the principal heat flow is along the
aluminum can from the capacitor bottom to the capaci-
tor sides, and power is radiated and convected away
from the capacitor bottom and sides to the environment.

A heatsink mounted to the bottom of the capacitor is
an effective heat transfer mechanism since the lowest-
resistance thermal path is axial. Extended cathode con-
struction is a must when a heatsink is attached to the
capacitor bottom in order to realize the advantage of the
heatsink, because the primary thermal path is axial.

From the discussion thus far, it is apparent that there
is an axial heatflow path, a radial path, and a coupling
path via the capacitor can. This naturally leads to mod-
eling the capacitor’s thermal characteristics as a three-
loop circuit. See Fig. 2a. Using an electrical circuit anal-
ogy, thermal power is analogous to electrical current,
temperature is analogous to voltage, and thermal resis-
tance is analogous to electrical resistance. See Fig. 2b.

Assuming that the two ambient temperatures and the
seven thermal resistances are known, the value of the
core temperature is determined as follows. We define
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 = Thermal resistance, winding to can bottom

R
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All resistance units are (ºC/W). Using Kirchoff’s Volt-
age Law around Loop 1, we have
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Fig. 2.  (a,top) Thermal circuit equivalent for bus capacitor;
(b,bottom) electrical circuit analogy.
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and around Loop 2 we have

V
C
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 .   (3)

Around the outer loop we obtain

V
1
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 + (V

2
 + I

2
R

6
) .   (4)

Equations (2), (3) and (4) may be combined to yield an
expression relating I

3
 to V

C
 in terms of known quanti-

ties as

I
3
 = BV

C
 + C   (5)

where

B =   (6)

and

C =   (7)

Noting that I
S
 = I

2
 ! I

1
 , we may use (2) and (3) to ob-

tain

I
3
 = EV

C
 + F .   (8)

where

E =   (9)

and

F = (10)

Now (5) and (8) together yield

V
C
 = (F-C)/(B-E) , (11)

which is the core temperature we seek.

III. THE THERMAL RESISTANCE VALUES

There are seven thermal resistances in this model as
defined in (1). The value of the seven resistances may
be calculated using the heat conduction equation and
radiation/convection heat transfer theory along with the
capacitor dimensions, effective thermal conductivities,
and thermal properties of the environment. The neces-
sary equations are presented in [2].

The thermal resistance, R
1
,  from the can bottom to a

heatsink or to the ambient, is either a conduction or a
convection value, depending on whether the contact is
to a metal plate or to air, respectively. For contact to a
metal plate, R

1
 is a contact resistance whose value is

dictated by the clamping force, surface flatness, can
bottom surface area A

CB
 [m2], and interfacial material

properties. An approximate value for a conventional,
sleeved capacitor is

R
1COND

 ≈ 0.0059 / A
CB

[ºC/W]. (12)

Adding a SilPad reduces this value by about 20%, while
a bare aluminum can bottom clamped to a flat metal
surface can reduce (12) by about 70%. The effective
thermal resistance of a heatsink or chassis plate is de-
rived in the next section.

For direct contact to moving air of velocity v [m/s],
the convective thermal resistance is

R
1CONV

  =  R
1COND

 + 1 / hA
CB

(13)

where h [W/m2K] is the combined convection/radiation
coefficient [2]

h ≈ 5 + 17 ( v + 0.1 )0.66 (14)

The value of h increases slightly for small capacitors,
varying as the negative one-fourth power of the diam-
eter [3].

The thermal resistance R
2
 from the capacitor winding

to the capacitor bottom depends on the surface contact
area A

W 
, the contact pressure, and the interface con-

ductivity and thickness. For a tightly compressed screw
terminal capacitor with wet paper or pitch providing
the contact between the winding and the can bottom,
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R
2
 ≈ 0.0075 / A

W
  . (15)

The coefficient indicated by (15) is reduced about 90%
when extended cathode construction is used along with
tight compression. This coefficient is also reduced some-
what in small-diameter capacitors and snapmount ca-
pacitors due to their narrower interface dimensions.

The axial thermal resistance R
3
 of the capacitor wind-

ing is straightforward to calculate when the winding axial
conductivity k

Z
 (related to the relative foil and paper

thicknesses) is known, along with the winding inner ra-
dius R

I 
, winding outer radius R

O 
, and winding length

L
W
 . Bearing in mind that the power is uniformly dis-

tributed, we have

R
3 
≈  L

W
 / [2π k

Z
 ( R

O
2 ! R

I
2) ]. (16)

The radial thermal resistance R
4
 of the capacitor wind-

ing is also straightforward to calculate when the radial
thermal conductivity  k

R
 is known.

R
4
 ≈  [2R

I
2 ln(R

I
/R

O 
)/(R

O
2 ! R

I
2) + 1] / ( 4π k

R
 L

W
 ).
(17)

The radial thermal resistance R
5
 from the capacitor

winding to the can wall occurs via convection and ra-
diation [2].  For an inner can diameter of D

C
 , an outer

winding diameter of D
W
 , we have

R
5
 ≈  ln(D

C
 / D

W 
) / ( 2π k

RWC
 L

W
 ) (18)

where k
RWC

 denotes the effective thermal conductivity
in the region between the winding and the can wall. For
pitch,  k

RWC
 ≈  0.2 - 0.3 W/m·K.

For a vapor gap [2],

(19)

where σ denotes the Stefan-Boltzmann constant, ε
W
 is

the emissivity of the winding’s outer surface, ε
C
 is the

emissivity of the can’s inner surface, T
W
 [K] is the wind-

ing surface temperature, T
C
 [K] is the can temperature,

and ∆T = T
W
 ! T

C
 . Since T

W
 and T

C
 are not known,

(19) requires that they be estimated. This estimation can

be done iteratively or by using other techniques.
The thermal resistance R

6
 from the can wall to the

ambient environment is obtained from

R
6
 ≈ 1 / hA

CW
(20)

where A
CW

 is the area of the can wall [m2] and h is given
by (14).

Finally, the thermal resistance of the can wall is readily
determined by heat conduction theory. This parameter
should include the radial thermal resistance of the wind-
ing and can bottom as well as the axial thermal resis-
tance of the can wall.

R
7
 = R

4
 // R
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SIDE
(21)

where “//” indicates the parallel operation (a//b = ab/
(a+b)) and

R
CAN BOTTOM
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[2R

I
2 ln(R

I
/R

O 
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O
2 ! R

I
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 d

B
 ). (22)

Here k
AL

 is the thermal conductivity of aluminum and
d

B
 is the thickness of the can bottom. Also

R
SIDE

 = L / (4π k
AL

 R
C
 d

C
 ) (23)

where L is the can length, R
C
 is the effective can radius

and d
C
 is the can wall thickness.

There are inherent limitations to the accuracy of the
lumped parameter thermal model. First, some sources
of error arise from the assumption that the can is at a
constant temperature. We expect to make further refine-
ments in estimating the effective average temperature
of the can. Second, the contact resistances R

1
 and R

2

vary with the contact force. Some capacitor designs have
higher compression than others, and the width of the
paper or cathode margin at the bottom of the winding
varies from one design to another.

Verification of the vapor gap conductivity has been
difficult, and we are still in the process of measuring the
effect of can wall and winding emissivity variation ex-
periments. Equation (19) provides winding-to-can-wall
results that correlate with experimental data with ε

W
 =

0.85 and ε
C
 = 0.40.
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Fig. 3.  Calculating the thermal resistance of
a capacitor mounted to a chassis.

IV. THERMAL RESISTANCE OF A
CHASSIS PLATE

This discussion shows the effect of attaching the ca-
pacitor to a chassis plate for cooling. Generally the plate
area is larger than that of the capacitor can, and there is
some air movement and surface radiation. But the plate
cannot usually be treated as an isothermal or even a
constant-flux surface due to its appreciable conductance
losses.

 Consider a circular plate of radius R
P
, thickness d

P
,

and thermal conductivity k
P
, with a center-mounted ca-

pacitor of radius R
C
 dissipating power P into the plate,

immersed in an environment (one side) of temperature
T

A
 with combined radiation and convection coefficient

h. The temperature distribution T(r) may be found us-
ing the heat equation in cylindrical coordinates,

(24)

where g is the volumetric power density and r is the
radial coordinate. We have two regions,

(25)

Let us consider solutions in these two regions. First, for
the outer region r > R

C
 let

X
1
 = T ! T

A
r > R

C
. (26)

We have

(27)

which expands to Bessel’s equation

(28)

whose solution is [4]

X
1
 = C

1
 I

0
(ar) + C

2
 K

0
(ar) (29)

where

a =     h / (k
P
d

P
) (30)
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dr           dr           k
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and I
n
(ar) and K

n
(ar) are modified Bessel functions of

order n.
For the inner region r ≤ R

C
 let

X
2
 = T ! [ T

A
 + P / (πk

P
d

P
R

C
2)]     r ≤ R

C
  . (31)

This leads to

X
2
 = C

3
 I

0
(ar) + C

4
 K

0
(ar) (32)

There are four constants, so that four boundary condi-
tions are required. First, by symmetry we know that the
heat flux at r=0 is zero so that

(33)

yielding C
4
 = 0. We know that there is zero heat flux at

the outer edge where r = R
P
 so that

C
1
aI

1
(aR

P
) ! C

2
aK

1
(aR

P
) = 0 . (34)

Hence

C
2 
= C

1
 × I

1
(aR

P
) / K

1
(aR

P
) . (35)

We enforce temperature continuity at r = R
C
 and obtain

(C
1
!C

3
) I

0
(aR

C
) + C

2
 K

0
(aR

C
) = P / (πR

C
2h)  . (36)

As the last boundary condition we apply Fourier’s Law
to the inward flux at r = R

C
, assuming T(R

C
) ≈ T(0) so

d2X
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P
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dX
1

dr
r=R

C

= C
1
aI

1
(aR

C
) ! C

2
aK

1
(aR

C
) ≈

hR
C

2X
1
(R

C
)! P

2R
C
k

P
d

P

that

             (37)

We may solve equations (35), (36), and (37) simulta-
neously to obtain

C
1
 =

(38)

C
2
 = C

1
I

1
(aR

P
)/K

1
(aR

P
) (39)

C
3
 = C

1
 + [C

2
K

0
(aR

C
) ! P/(πR

C
2h)]/I

0
(aR

C
) (40)

Fig. 4 shows a typical temperature distribution plot. The
effective thermal resistance from the capacitor bottom
to the air may be found as

θ
CA

 = (T(0) - T
A
)/P . (41)

In the example of Fig. 4, the chassis plate provides a
thermal resistance of less than 1 ºC/W to the ambient
air, which would greatly reduce the core temperature
and extend the life of the capacitor.
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Fig. 4.  Graph of the radial temperature distributon
of a circular aluminum chassis plate with a center mounted

capacitor.
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V. TRANSIENT RESPONSE

So far we have discussed steady-state temperatures,
but in many cases the capacitor core temperature re-
sponse to a transient current surge or ambient tempera-
ture change needs to be evaluated. The thermal time
constant τ of a capacitor is the time required for the
core to reach 63% (1-e-1) of a step change in the ambi-
ent temperature. Once the effective thermal resistance
from the core to the ambient is known, the thermal time
constant of the capacitor may be calculated by lumped-
parameter analysis if the Biot number Bi is much less
than unity [5]:

Bi ≡ hL / k « 1 . (42)

Since per (14) the convection coefficient h < 100 W/
m2K for air velocities less than 10 m/s, the winding length
L < 0.2 m, and the axial winding conductivity k

W
 ≈ 100

W/m·K [2], Bi < 0.2 and condition (42) is met for low
and moderate air velocities and no heatsink. If Bi > 0.2
and a precise transient response is needed, FEA tran-
sient modeling techniques should be used. If Bi < 0.2,

τ  ≈  mC
P
θ

WA
[s] (43)

where m is the capacitor mass [kg], θ
WA

 is the thermal
resistance from the winding to the ambient, and C

P
 is

the specific heat  [J/(kg·K)] of the winding, which we
have measured to be approximately

C
P
 ≈ 1400  [J/(kg·K)] . (44)

The rate at which the core of a capacitor will heat
when subjected to a power P, assuming an adiabatic
process, where negligible heat energy transfer occurs
over the period of interest, is therefore

dT
C
/dt = P / (mC

P
) . [ºC/s] (45)

Integrating (45), assuming the power P is  applied at
time t=0 and that the initial temperature is T

0
 [ºC], we

obtain the core temperature response

T
C
(t) = T

0
 + P t / (mC

P
). (46)
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This equation is useful for examining the effect of a
high-current transient event. For example, if a capaci-
tor is rated 10 amps rms but 40 amps rms is to be ap-
plied for one minute, (46) may be used to determine
whether the capacitor will overheat. For extremely high
current transients, other limitations such as tab fusing
need to be addressed as well. Also, the capacitor mass
m should be that of the winding only, excluding the pitch
and other mass, when (45) with this lighter mass gives a
thermal rise rate of greater than about 0.03 ºC/s.

A capacitor’s transient core temperature response to
a step increase or decrease in ambient temperature ∆T
is determined, subject to (42), by appealing to a DC
electrical circuit model analogy. The model is of a ca-
pacitor transient voltage response to a DC voltage source
being switched at t=0 to a series RC circuit. See Fig. 5.
By inspection,

T
C
(t) = T

0
 + ∆T [ 1 ! exp(-t /τ ) ] (47)

where T
0
 is the initial capacitor and ambient tempera-

ture. Equation (47) is useful for examining the effects
on the core temperature of brief exposure to a high am-
bient temperature such as in a wave-solder or solder-
reflow machine. However, care must be taken to insure
that the capacitor sleeve is not overheated, as splitting
may occur.

 VI. THERMAL MODEL RESULTS

Example output of an FEA-based partial differential
equation solver is shown in Fig. 6. The accuracy of this
model has been discussed and is usually within 10%
[2]. Fig. 7 shows a comparison of results of the lumped-
parameter “7R” thermal model presented in the present
paper to some test data and to the FEA model.

VII. THE LIFE MODEL

The present life model that we use is based on test
data and on life models used throughout the electrolytic
capacitor industry. The model is based on the Arrhenius
equation and on the activation energy of anodic alumi-
num oxide and the rate of decomposition of the electro-
lyte-spacer system. The life equation is used to model
the approximate time interval at which the 85 ºC effec-
tive series resistance (ESR) of a typical capacitor will
exceed twice its initial value.

The life model that we use at present is

L = L
B
 × M

V
 × 2 ^ [(T

R
!T

C
)/10] (48)

where L
B
 is the base life in hours at the DC life test

temperature at rated voltage V
R
 and rated temperature

Fig. 5.  (a,top) Transient thermal circuit equivalent for bus
capacitor; (b,bottom) electrical circuit analogy.
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T C(0) = T0 [ºC]

V 0+∆V

V C
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+

-
C

VC(0) = V0 [V]

R

Fig. 6.  Typical graphical output from FEA-based
equation solver thermal simulation. This capacitor has

extended cathode construction and is mounted to an annular
heatsink with a thermal resistance of 1 ºC/W.
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T
R
, T

C
 is the actual core temperature, and M

V
 is the DC

voltage multiplier,

M
V
 = 4.3 ! 3.3 × V

A
 / V

R
 . (49)

All voltages are in volts and temperatures in ºC.

VIII. THE ESR MODEL

The effective series resistance (ESR or R
S
) at 25 -

100ºC is relatively straightforward to model. R
S
 con-

tains a frequency-dependent dielectric loss R
OX

 due to
the dissipation factor of the aluminum oxide dissipation
factor, DF

OX
, and a temperature-dependent loss R

SP
 due

mostly to the electrolyte-impregnated paper and the liq-
uid electrolyte in the etched pits or tunnels of the foil.

R
S
 = R

OX
 + R

SP
(50)

where

R
OX

 (f) = DF
OX

 / 2 π f C (51)

and

R
SP

 (T) = R
SP

(25 ºC) ×  2^[-((T-25)/A)^B] (52)
25 ºC ≤ T ≤ 100 ºC

where the constants A and B are unique to the electro-
lyte-spacer system. Typical parametric values for a 400-

volt, ethylene glycol-based electrolyte-spacer system are
A = 40 and B = 0.6.

A typical value for DF
OX

 is 0.015. Equation (51) can
be refined by adding a slight positive temperature coef-
ficient multiple to the DF

OX
 parameter.

It can be seen that the ESR has the largest magnitude
at low temperature, low frequency, and that the ESR
has the smallest magnitude at high temperature, high
frequency. For a given capacitance and temperature,
there is a frequency f

FLAT
 above which the additional

ESR drop will be less than 10%:

f
FLAT

 ≈  5 DF
OX

 / ( π R
SP

 C) (53)

It is apparent that if the actual 25 ºC, 120 Hz ESR
and the DF

OX
 are known, that the ESR at all frequencies

and temperatures above 25 ºC can be found.
A few cautionary statements should be made concern-

ing the use of this simple ESR model. When the ripple
voltage

V
RMS

 ≈ I
RMS

 / ( 2 π f C ) (54)

exceeds about 10% of the rated DC voltage, which can
occur at low frequency, high ripple current, special ca-
pacitor design is required, and the heating and stability
of a standard capacitor are often not well predicted by
this simple ESR model.

Although R
S
 accounts for capacitor heating by mod-

eling the capacitor losses as a series resistance, it should
be noted that the dielectric loss accounted for by R

OX

actually occurs inside the dielectric and does not cause
a voltage drop at the capacitor terminals when a pulse
current is applied.

For very low ESR capacitor designs (R
S
 < 10

milliohms) at f > f
FLAT

 , a  term accounting for the foil
and tab metal resistance should be added to (52) for
enhanced accuracy. This term is relatively frequency
and temperature invariant, and has an inverse relation-
ship with the number of tabs.

At very high frequencies (above 50 kHz), the R
SP

 di-
minishes an additional 10-50% due to a transmission-
line effect of the microscopic, electrolyte-filled, etched
tunnels in the surface of the foil. The capacitance also
decreases along with the R

SP
 , and together the roll-off

occurs such that the tunnel impedance approaches a
phase angle of -45º.

Fig. 7.  Comparison of results from the 7R lumped-
parameter thermal model and FEA-equation solver model

versus test data. The test data includes capacitors in still air,
isothermal heat sink, and moving air from 80 to 1000 LFM.
Core rise above ambient was generally 10 - 30 ºC. Capacitor

sizes range from 1.375” diameter to 3.0” diameter.
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IX. THE JAVA  APPLET

The thermal, life, and impedance models presented in
this paper have been combined and coded into a java
applet to predict life. See Fig. 8. The inputs fields are
selected or filled in as needed by the user. There is also
a database search feature to locate a catalog capacitor
if desired.

The seven resistances of the 7R thermal model are
determined from the capacitor type (extended cathode
or extended paper construction), winding size, and case
size, as well as from the ambient parameters.

The 25 ºC, 120 Hz ESR that the user has entered or
that the database search feature has provided, along with
the capacitor type, voltage rating, and capacitance, forms
the basis for calculating Rsp(25 ºC) and for establish-
ing the ESR model for all frequencies and temperatures.

The prediction of the initial core temperature is found
by calculating the power dissipation from the ESR model
and the core temperature from the 7R thermal model.
This is done iteratively because the dissipated power is
a function of the ESR, the ESR is a function of the core

Fig. 8.  Java Applet Life Calculator based on the 7R
lumped-parameter thermal model, ESR model, and life

model presented in this paper.

temperature, and the core temperature is a function of
the power.

Analytical solutions to this problem generally include
functions (such as the Lambert W function) that are not
included in the math libraries of most spreadsheet and
Java development packages. In the iterative solution of
the java applet, the “seed” (initial guess) core tempera-
ture is set to the zero-power core temperature (usually
the same as the ambient temperature), and the calcula-
tion loop usually settles to within 0.01 ºC of the previ-
ous calculation within 10 iterations.

The calculated core temperature is the expected ini-
tial core temperature of the capacitor under the operat-
ing conditions specified by the user.

Since the ESR increases over the life of the capacitor,
and the hot ESR is allowed to double, we base the life
calculation on an “average” ESR that is 50% greater
than the initial ESR. If the core temperature associated
with this average ESR is greater than the maximum al-
lowable core temperature, the user is alerted and life
calculations are not presented.

X. CONCLUSIONS

In this paper we have developed a lumped parameter
seven-resistor thermal circuit model whose resistances
are based on the capacitor construction and relevant heat
transfer theory. We have presented an ESR model and a
life model. We have discussed the workings of a java
applet that combines these three tools to predict core
temperature and life.
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