CAPACITORS IN PARALLEL

\[C_T = C_1 + C_2 + C_3 + ... \]

CAPACITORS IN SERIES

\[C_T = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + ...} \]

CAPACITIVE REACTANCE

\[X_C = \frac{1}{2\pi f C} \]

CHARGE ACROSS A CAPACITOR

\[Q = CV \]

ENERGY STORED IN A CAPACITOR

\[J = \frac{1}{2} CV^2 \]

EQUIVALENT SERIES RESISTANCE

\[ESR = DF \cdot X_c = \frac{DF}{2\pi f C} \]

IMPEDANCE

\[Z = \sqrt{(ESR)^2 + (X_L - X_C)^2} \]

PEAK CURRENT

\[I = C \frac{dv}{dt} \]

POWER LOSS IN A CAPACITOR

\[P = (I_{ac})^2 ESR + I_{dc}V = (V_{ac})^2 2\pi f CDF + I_{dc}V \]

SELF RESONANT FREQUENCY

\[f = \frac{1}{2\pi \sqrt{LC}} \]

TEMPERATURE RISE WITHIN A CAPACITOR

\[\Delta t = \frac{P}{h} \quad \Delta t \leq 10^\circ C \quad \beta = 0.001 \frac{W}{cm^2 \cdot C} \]

CAPACITOR VOLTAGE DURING CHARGE

\[V_c = V(1-e^{-t/RC}) \quad X = \frac{t}{RC} \]

CAPACITOR VOLTAGE DURING DISCHARGE

\[V_c = Ve^{-t/RC} \quad X = \frac{t}{RC} \]