CAPACITORS IN PARALLEL

$$C_T = C_1 + C_2 + C_3 + ...$$

CAPACITORS IN SERIES

$$C_T = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}} + \dots$$

CAPACITIVE REACTANCE

$$X_2 = \frac{1}{2\pi f C}$$

CHARGE ACROSS A CAPACITOR

$$Q = CV$$

ENERGY STORED IN A CAPACITOR

$$J = \frac{1}{2} CV^2$$

EQUIVALENT SERIES RESISTANCE

$$\mathsf{ESR} = \mathsf{DF} \bullet \mathsf{X}_{c} = \frac{\mathsf{DF}}{2\pi f \mathsf{C}}$$

IMPEDANCE

$$Z = \sqrt{(ESR)^2 + (X_L - X_c)^2}$$

PEAK CURRENT

$$I = C \frac{dv}{dt}$$

POWER LOSS IN A CAPACITOR

$$P = (I_{AC})^2 ESR + I_{DC}V$$
$$= (V_{AC})^2 2\pi f CDF + I_{DC}V$$

SELF RESONANT FREQUENCY

$$f = \frac{1}{2\pi\sqrt{LC}}$$

TEMPERATURE RISE WITHIN A CAPACITOR

$$\Delta t = \frac{P}{BA} \qquad \qquad \Delta t \le 10^{\circ} C \\ \beta = .001 \frac{W}{cm^{2} \cdot C^{\circ}}$$

CAPACITOR VOLTAGE DURING CHARGE

$$Vc = V(I-e^x)$$
 $X = \frac{\tau}{BC}$

CAPACITOR VOLTAGE DURING DISCHARGE

$$Vc = Ve^x$$
 $X = \frac{\tau}{RC}$