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Abstract ! A comprehensive thermal model for screw-termi-

nal aluminum electrolytic capacitors is developed. The test meth-

odology and data upon which the model is based are discussed. 

Exact one-dimensional solutions, multi-dimensional heat equa-

tions, and finite-element analysis (FEA) model simulation results 

are presented. The effects of conduction, heat sinking, natural 

(free) convection, forced convection, and radiation are quanti-

fied and compared. Complex issues, such as anisotropism and 

multi-phase heat transfer, are discussed. A comparison of model 

results to test data is presented. Varying capacitor construction 

techniques are evaluated. 

I. INTRODUCTION 

The life of an aluminum electrolytic capacitor varies expo-

nentially with temperature, approximately doubling for each 

10 ºC cooler the hottest place in the capacitor (the “core” or 
“hot spot”) is operated [1]. Since the temperature rise of the 

core is directly proportional to the core-to-ambient thermal re-

sistance, the life is also an exponential function of the thermal 
resistance. In this paper, models to predict this thermal resis-

tance for various construction techniques are developed and 

used. 
This paper focuses on modeling computergrade, or screw 

terminal, capacitors. However, the concepts can be applied to 

other aluminum electrolytic capacitor constructions, such as 
snap-mount, radial, and axial capacitors. 

An aluminum electrolytic capacitor is generally comprised 

of a cylindrical winding (“section”) of aluminum anode and 
cathode foils separated by papers impregnated with a liquid 

electrolyte, usually based on ethylene glycol. See Fig. 1. The 

anode and cathode foils are made of aluminum, and the anode 
is usually highly etched. There is a thin coating of aluminum 

oxide on the surface of the anode. The anode and cathode foils 

are contacted by means of aluminum tabs that are extended 
from the winding. These tabs are attached to aluminum termi-

nals in a polymeric top. The wet winding is sealed into an 

aluminum can. 

One fact that is apparent when beginning the task of ther-

mally modeling an aluminum electrolytic capacitor in a typi-
cal operating environment is that the effort is inherently com-

plex. This complexity is due to several factors. First, all three 

of the heat transfer modes (conduction, convection, and radia-
tion) are present and may be significant. Second, the conduc-

tion from the winding to the case is dependent on the method 

and intimacy of contact between the two. Third, as will be 
discussed later, the conductivity of the winding is different in 

the axial and radial directions. Fourth, both free convection of 

electrolyte-air vapor as well as two-phase heat transfer mecha-
nisms may be present internally. Finally, external to the ca-

pacitor, both radiation and convection are present as heat trans-

fer modes, the latter of which may be natural or forced, or 
both. 

We undertake this work by first looking at the simpler con-

duction and convection aspects of the problem. We use some 
mathematical and FEA simulation techniques to compare pre-

dictions of simpler models with measurements taken on ca-

pacitors of known construction operating with known ripple 
power in known thermal environments. 

Fig. 1. Typical screw terminal capacitor constructions: 
pitch (left) and pitchless (right). 
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II. THE WINDING 

Starting from the hottest spot and working outward, we find 

that the winding of an aluminum electrolytic capacitor is highly 

anisotropic, due to the fact that the thermal conductivity is much 
larger in the axial direction than in the radial direction. This is 

because the papers are effectively in parallel in the axial direc-

tion but in series in the radial direction, and the conductivity 
of the foil is much higher than that of the papers, even when 

the papers are wet with electrolyte. See Table I [2]. On the 

other hand, the cross-sectional area of the heat flux path is 
generally larger in the radial direction, and the heat flux path 

distance is usually smaller in the radial direction, depending 

upon the aspect ratio (length/width ratio) of the capacitor wind-
ing. Both of these heat path geometric facts favor relatively 

higher thermal conductance in the radial direction, while the 

anisotropism greatly favors higher thermal conductance in the 
axial direction. 

Considering a general three-dimensional physical model of 

the capacitor winding, we find that the symmetry lends itself 
to cylindrical coordinates involving an axial component z, a 

radial component r, and an angular component ψ. It is hoped 

that the thermal conductivity can be modeled as an anisotropic 

cylinder with no angular variation, so that ψ may be neglected. 

Furthermore, it is desirable to assume position-independent, 
constant axial and radial thermal conductivities. This is equiva-

lent to modeling the capacitor winding axisymmetrically as a 

series of concentric cylinders, alternating foil and wet paper. 
However, we realize that there is a turn-to-turn angular contri-

bution of the foil to the radial conductivity. This contribution 

diminishes as the radial position is increased. See Fig. 2. 

To justify the assumption of a negligible angular coupling 

contribution to the radial thermal conductivity, we consider a 
single representative turn of a foil-paper layer in the winding, 

and compare the magnitudes of the radial thermal resistances 

through the bulk versus along the angular direction. See Fig. 
3. We may assume that the angular conductivity kψ is approxi-

mately that of aluminum, that the radial conductivity k is ap-
r

proximately that of the electrolyte, and that the aluminum plate 
thickness and paper thickness are approximately the same, Δr/ 

2. Since kψ >> k , the radial thermal resistance of this arbi-
r

trary turn is 

θ ≈ Δr / ( 4πRLk ),         (1) 
r r 

the angular contribution to the radial thermal resistance is 

θψ ≈ 4πR / ( ΔrLkψ ),         (2) 

and the ratio of these thermal resistances is 

θψ / θ ≈ ( 4πR / Δr )2 × ( k  / kψ ) .         (3) 
r r

Noting that the paper thickness is approximately 100 µm, the 
radial position R of concern is at least 1 cm, and kψ exceeds k 

r 
by less than three orders of magnitude, we find that the ratio 

(3) evaluates to at least 1600. Therefore the angular contribu-
tion of the thermal conductivity is negligible, and so the radial 

variation of the radial thermal conductivity is negligible. By 

further appealing to the symmetry of the winding, we can dem-
onstrate that the axial conductivity k and the radial conduc-

z
tivity k can be assumed to be constant. 

r

Table I 
Thermal Conductivity of Selected Materials 

Material k (W/mAK) 
Type IIa Diamond 2300 
Silicon Carbide  490 
Silver   425 
Copper   398 
Aluminum   240 
Aluminum Oxide  36 
Ice       2.0 
Pyrex Glass  1.4 
Water 0.65 
Silicone Rubber  0.35 
Ethylene Glycol  0.26 Fig. 2. Angular contribution to the
Air or steam  0.03 radial thermal conductivity. 
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We would like to use k and k as average values for a given
r z

winding. These values need to take into account the relative 
thicknesses of the foil and of the paper.  One complication with 

simply calculating the k parameters as weighted averages is 

that the anode foil is typically highly etched, and is often about 
70% aluminum by weight and 30% aluminum oxide by weight 

when dry. By volume, the anode foil is only about 50% alumi-

num, the other components being aluminum oxide and elec-
trolyte. Obviously we cannot simply use the percentage of alu-

minum to calculate the relative values of the axial and radial 

thermal conductivities of the anode foil, since the etching ge-
ometry is the more dominant factor and is not uniquely deter-

mined by the aluminum volume. 

Another complicating factor in calculating the axial and ra-
dial thermal conductivities is the paper compression that oc-

curs in an actual winding. It is difficult to know the compres-

sive force on a paper as it is wound, and even more difficult to 
estimate this after the winding is saturated with electrolyte, 

causing the paper to swell. 

Because of these complicating factors and since we want to 
measure the thermal conductivities of other materials used in 

the construction of capacitors, we measure the thermal con-

ductivities empirically on a thermal test stand. Fig. 4 shows a 
schematic of the test setup we use. A material of thermal con-

ductivity k, uniform length L, and uniform cross-sectional area 

A has a thermal resistance along its length of 

θ = L / (kA).  (4) 

Fig. 3. Angular contribution to the radial thermal 
conductivity of an arbitrary turn at radial location R. 

The temperature drop ΔT across a thermal resistance θ with a 

power P flowing through it is 

ΔT= Pθ = PL / (kA).  (5) 

Therefore the thermal conductivity can be determined as 

k = PL / (AΔT).         (6) 

This simple relationship was used to determine thermal con-

ductivities of a wide variety of capacitor materials and of the 
axial thermal conductivity k of the winding itself. Windings 

z
of various sizes were drilled at 1 inch axial spacing approxi-

mately 0.5 inches deep, and thermocouples were inserted into 
these holes. The injected power P was adjusted from 5 watts to 

20 watts through use of a silicone rubber heater clamped be-

tween thin aluminum plates. The power source was an AC 
variac, and a power meter was used to measure the dissipated 

power. The plate was pressed in contact with the top of the wet 

winding, and the bottom of the winding was placed in contact 
with a flux-measuring device comprised of two parallel alumi-

num plates with a vacuum casting of a polymer with known 

thermal conductivity. The other side of the flux measuring de-
vice was thermally bonded to an aluminum chiller plate of pro-

grammable temperature. 

The entire system was enclosed in a large silicone foam rub-
ber cylinder full of styrofoam pellets to create a nearly adia-

batic environment. A computer and data acquisition system 

Fig. 4. Measuring the axial thermal conductivity 
of a capacitor winding. 
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were used to monitor the temperatures under each test condi-

tion. Generally, steady-state conditions were reached within 
four hours. 

Measuring the radial thermal conductivity was somewhat 

more complex than measuring the axial thermal conductivity 
for two reasons. First, a radial heat source to make intimate 

contact with the arbor hole was not easy to design and fabri-

cate. It was necessary to use an expanding copper arbor with 
thermally bonded resistors. Secondly, the radial heat flow path 

prevented (6) from being used, since the cross-sectional area 

varied with the radius. An expression for the thermal conduc-
tivity versus power, length, and radial position is derived as 

follows. Let P represent the uniformly injected power into a 

cylindrical region of radius RI centered along the axis of a cy-
lindrical winding whose outer radius is R

O
 and whose radial 

thermal conductivity is k. The outer surface r=R
O
 of the wind-

r 
ing is maintained at temperature T

O
. See Fig. 5. The tempera-

ture distribution is readily derived by using a variation of (5), 

where we consider the length to be an incremental radius dλ 
and the cross-sectional area to be a function of the radius λ, 

A(λ) = 2πλL,         (7) 

Since we know the temperature at r=R
O
, we have 

R
PAdλT(r) = T + I O 

,         (8) 
O 2πk λL r r 

which simplifies to 

T(r) = T
O
 + PAln(R

O
/r)/(2πk L).         (9) 

r

Equation (9) assumes that there is no axial heat loss. 

Fig. 5. Measuring the radial thermal conductivity 
of a capacitor winding. 

Radial thermal tests were performed on a 2.5” diameter by 

5” long winding with a 0.75” diameter hole bored along its 
axis. Thermocouples were inserted into small holes drilled at 

0.25” intervals, approximately 1.5” deep, at various radial lo-

cations. The winding was impregnated with pure ethylene gly-
col (the nonconductive, common electrolyte solvent) instead of 

electrolyte to prevent ionic contamination of the copper power 

resistor assembly. A large, flanged, four-piece, hollow alumi-
num cylinder with 0.75” thick walls was used to make contact 

between the outside of the winding and the flat chiller plate 

during these tests. The four sides of the block were clamped 
with large hose clamps to establish good thermal contact to the 

outside of the wet winding. The entire system was thermally 

isolated as in the previous tests. 
The temperature distribution was recorded on the data ac-

quisition system, and the temperatures were found to fit a loga-

rithmic plot that conformed to (9) almost perfectly. See Fig. 6. 
The power was varied from 10W to 20W and the chiller refer-

ence temperature was varied from 25 ºC to 65 ºC. The value of 

k was deduced from these measurements and was found not to r
vary by more than ±10% over the tested range. 

Additional measurements were made of stacks of wet ca-

pacitor paper materials, of the sleeve materials, of pitch mate-
rials, and of contact resistances between the wet capacitor wind-

ing and the can bottom versus applied force. 

Table II summarizes the measured values of thermal con-
ductivities. We want to use these values in a thermal model, 

but we also want to be able to evaluate various sizes, shapes, 

and construction techniques interactively. For example, what 
is the effect of thickening the can bottom, installing an alumi-

num rod through the center of the capacitor, using an alumi-

num top, etc. Before we can answer these questions, we need to 
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Fig. 6. Model and data of the radial temperature distribution 
of a capacitor winding with power injected at the arbor. 
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develop a model of how heat is transferred throughout the wind-

ing when the power generation is uniform rather than concen-
trated at an artificially established isothermal surface as in the 

thermal conductivity measurement experiments. Additionally, 

we need to determine how the heat is transferred from the ca-
pacitor winding to the can, and from the can to the environ-

ment. Also, we want a fast, interactive thermal model. 

The general heat equation is

g δC MT
L2T P+  = C (10)k k Mt 

where L2 is the Laplacian operator, T is the spatial temperature 

distribution, δ is the material density, k is the material thermal 

conductivity, g is the regional volumetric power density, C
P
 is 

the specific heat, and t is time. 

When the steady-state solution is sought, the transient term 

on the right-hand side of (10) is zero. In rectangular coordi-
nates, the steady state, one-dimensional heat equation is

M2T g 
+  =  0 .       (11) 

Mz2 k 

The solution for the axial temperature distribution of a wind-

ing whose power is removed through conduction through its 
bottom end to a reference environmental temperature T

1
 is 

straightforward. See Fig. 7. In this case, g = P/(AL), and, inte-

grating (11) twice with respect to the axial coordinate z, we 
obtain 

T = Cz2 + Cz + C  (12)
1 2 3 .

Table II 
Measured Thermal Conductivities 

To obtain the value of the three constants, we  need to use three 

boundary conditions. We know that since the total power flows 
through the thermal resistances to the reference temperature, 

C
3
 = T(0) = T

1
 + P ( θ

1
 + θ

2 
).  (13) 

Furthermore, by Fourier’s Law [3] at the bottom, we know that

dT P
C  =  = .  (14)2 dz k A

z=0 z 

Finally, applying Fourier’s Law at the top, we obtain

dT 
=  0  =   2C

1
L + C

2
 . (15)dz 

z=L 

which yields 

C
1
 = !P / 2kLA .  (16)z 

In a similar manner, we may solve for the radial temperature 

distribution of a winding with uniform power generation and 

whose heat is removed solely in the radial direction. See Fig. 
8. We first examine the steady state heat equation in cylindri-

cal coordinates:

1 d dTC  r  +
g 

=  0 . (17)r dr [ ]dr k 
r 

Here 

g = P / [π(R
O

2 !R
I
2)L] .  (18) 

A 

Fig. 7. Deriving the axial temperature distribution of a 
capacitor winding with uniform power generation. 

Material 
k 

z
k 

r
Dry Paper (0.35 g/cm3)
Dry Paper (0.55 g/cm3)
Dry Paper (0.90 g/cm3)
EG-Impregnated paper
PVC Sleeve Material
End Disc Material
Sil Pad Material
Pitch 

k (W/mAK) 
100 

0.21 
0.046 
0.055 
0.076 
0.17 - 0.20 
0.093 
0.089 
0.34 
0.35 
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Multiplying by r then integrating yields

dT !Pr2 

r  =  +  C
4
 . (19)dr 2π(R

O
2 !R

I
2)Lk

r 

Dividing by r and integrating, we have

!Pr2 

T(r) =  + C
4
 ln(r) + C

5
 . (20)

4π(R
O

2 !R
I
2)Lkr 

Again solving for constants by enforcing boundary conditions, 

we know that there is no flux or gradient at r=R
I
 . Therefore,

2dT !2PR
I=  0 Y  C

4
 =  . (21)dr 4π(R

O
2 !R

I
2)Lkr=R

I 
r 

Since we know T(R
O
) = T

1
 + P ( θ

1
 + θ

2
 ), we have

P[R 2 + 2R2 ln(R ) ]
O I OC

5
 = T

1
 + P ( θ

1
 + θ

2
) +  . (22)4π(R

O
2 !R

I
2)Lk

r 

III. WINDING TO CAN 

At this stage we have sufficient models ((4), (9), (12) and 

(20)) and parametric values (Table II) to perform some com-

parisons between radial and axial heat transfer for a couple of 
different construction types and cooling techniques. 

Let us first consider windings of various sizes whose lengths 

are three times their diameters, assuming a uniform volumet-
ric power density g = 105 W/m3. Fig. 9 shows the relative effect 

on the maximum core temperature of maintaining an isother-

mal surface of 25 ºC at the entire outer radial surface (radial 
cooling) versus contacting the bottom only (axial cooling). Here 

θ
1
 = θ

2
 = 0. It can be seen that axial cooling is much more 

effective than radial cooling, especially in larger capacitors. 

Fig. 8. Deriving the radial temperature distribution of a 
capacitor winding with uniform power generation. 

Now let us compare axial and radial conductances by con-

sidering a more realistic case where the capacitor winding is 
coupled through its can which is contacting slowly moving air 

at a temperature T
1
= 25 ºC. The winding size is 2.5” diameter 

by 5” length, dissipating 10 watts, and the can is 3.0” outside 
diameter (2.95” inside diameter) by 5.6” length. Let θ

1
 repre-

sent the thermal resistance from the winding to the can, and let 

θ
2
 = 2 ºC / W represent the thermal resistance from the can to 

the environmental temperature T
1
. If we consider the can to be 

an isothermal surface, this means that the can temperature is 

45 ºC. 
Generally in capacitor designs with pitch or potting com-

pound, the winding is not compressed tightly against the can 

bottom, causing the axial thermal resistance from the winding 
to the can bottom to be relatively high. In the best pitchless 

designs, there are reinforcement ribs and integral center spikes 

in the top (header) and in the bottom to keep the winding aligned 
and to allow high compression of the winding. The lowest axial 

thermal resistance from winding to case is achieved in high 

compression pitchless designs with extended cathode, where 
the cathode is wider than the anode, and is offset and exposed 

on the bottom of the winding, having an effective thermal con-

ductivity that is dominated by interfacial properties (contact 
resistance) rather than bulk conduction properties. This inter-

facial conductivity was measured on the thermal test stand of 

Fig. 4 as being approximately 800 W/(m2K). Notice the units 
indicate that the effective conductivity is obtained by multiply-

ing the interfacial conductivity by the thickness of the inter-

face. 
For the case of axial conduction, we find for compressed wet 

paper between the winding bottom and the can, assuming a 

thickness of 0.062” and referring to (4) and Table II, θ
1
 = 2.8 

Maximum Core Temperature vs Winding Radius 
Radial vs Axial Heat Transfer Modes 
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Fig. 9. Relative effects of heatsinking the outer radial 
surface of winding vs heatsinking the bottom of winding.

M
ax

im
um

 C
or

e
T
em

pe
ra

tu
re

 (
ºC

) 

6 
Presented at the IEEE Industry Applications Society Conference, October 1999 



 

 

         
       

     

       

ºC/W; for uncompressed paper, assuming the thickness is 0.125 

inches, θ
1
 = 5.6 ºC/W.  For compressed extended cathode wind-

ing of this size in a pitchless design, we obtain 0.4 ºC/W. Us-

ing (12), we calculate the axial thermal resistance of the wind-

ing as θ 
a
 = 0.20 ºC/W. 

In the radial direction, in a design which is half-filled with 

pitch, the winding-to-can thermal resistance due to the pitch is 

calculated using (9) as 1.2 ºC/W. We have not yet derived the 
expressions for coupling via free convection and radiation of 

the winding to the can in the case of a pitchless design, but let 

us take this (to be justified later) as θ
1
 = 2.7 ºC/W for the entire 

winding to the can. Twice this thermal resistance would ap-

pear in parallel with the pitch resistance of 1.2 ºC, since the 

pitch only fills half of the space between the winding and can, 
giving a revised value of θ

1
 = 1.2 // 5.4 = 0.98 ºC/W for the 

radial winding-to-can thermal resistance of the pitch design. 

Using (20) we find the radial thermal resistance of the wind-
ing to be θ 

r
 = 3.1 ºC/W. 

Employing the thermal resistances above, we obtain the re-

sults summarized in Table III. Since both radial and axial heat 
transfer modes are present, and the can is virtually an isother-

mal surface, we may approximate the simultaneous effects of 

both axial and radial conduction by computing the result of the 
axial and radial thermal resistances in parallel. We conclude 

that the pitchless design with extended paper has a slight ad-

vantage over the pitch design, and that the extended cathode 
design has a very large advantage. In actual practice, the can 

temperature is not truly isothermal. In the case of the pitchless, 

extended cathode design, the can bottom is somewhat hotter 
than the sides, erasing some of the advantage of the pitchless 

design over that of the pitch design. 

Even though our simple one-dimensional thermal models 

Table III 
Results from 1-D Models 

θ
2
 = 2 ºC/W, T

1
 = 25 ºC, P = 10 W, 2.5” dia × 5” L winding 

Construction θ
1 

θ
1 

Heat Flow Direction
 r z Radial Axial r // z 

ºC/W  ºC/W T T T
CORE CORE CORE 

Pitch 0.98 5.6 86 ºC 103 ºC 67 ºC 

Pitchless, 2.7 2.8 103   75 65 
Extended Paper 

Pitchless, 2.7 0.4 103   51 50 
Extended Cathode 

have already led to useful results, showing that axial conduc-

tion offers the best opportunity for heat removal and allowing 
us to quantify the effects of heatsinking, we have so far only 

considered axial and radial thermal conductivity separately, 

and then lumped the average thermal resistances in parallel to 
examine the simultaneous effect. To precisely model the axial 

and radial heat conduction, we need to revisit (10). In cylindri-

cal coordinates, for the steady-state solution, we multiply by k 
to obtain

M Mk MTC  r  +  k          + g  =  0 . [ ] 
2

z
T
2 (23)r Mr Mr M

Since we are considering an anisotropic medium, we must as-

sociate the axial and radial conductivities separately. Fortu-
nately, (23) is in a separable form with respect to the spacial 

variables and this is straightforward. We have

k M MT M2T 
r C Mr [ r ]          + k 

z z2 
          + g  =  0 . (24)r Mr M

Unfortunately, (24) is impossible to solve in closed form for 
most interesting cases. If we assume g=0 (no internal power 

generation) and provide surfaces with simple boundary condi-

tions, we obtain solutions of the form 

4 4  
λr λrT(r,z) =  33{ [ai

 J
0 ( )           + b

i
 Y

0( ) ]Cok ok r ri j 
(λz λz , (25)

[cj
 J

0 )           + d
j
 Y

0( )]}ok ok 
z z 

where J
0
 and Y

0
 are the zeroth-order Bessel and Weber func-

tions, respectively. It was therefore concluded fairly early in 

our thermal modeling development work that computer solu-

tions would need to be employed. 

IV. CAN TO ENVIRONMENT 

The heat transfer modes from the can to the ambient envi-

ronment may include conduction, convection, and radiation. 

Conduction is a volumetric parameter, and includes path length 
as well as cross-sectional area effects, as has already been dis-

cussed. Externally, conduction is a significant mode only when 

the capacitor is attached to a heat sink. 
Convection, on the other hand, is generally modeled as a 

surface effect, although the localized film thickness and veloc-

ity (hydrodynamic) and temperature (thermodynamic) distri-
butions extend beyond the surface. The parameter that describes 

the degree of thermal heat transfer coupling from a surface of 
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area A to the ambient fluid is known as the convection or film 

coefficient, h, which is a strong function of the fluid velocity 
and mass transfer properties, such as density and viscosity. If 

the surface is at a higher temperature than the environment by 

an amount ΔT, the power P
CONV

 dissipated through convection 

is given by 

P
CONV

 = hAΔT.  (26) 

Although (26) holds for virtually any fluid, this paper deals 

only with the fluid being air at standard atmospheric pressure 

and at a temperature between 25 ºC and 85 ºC. 
An approximate value of h versus velocity which is com-

monly used in the capacitor industry is 

h
TOT 

≈ 11  (v+0.25)/(0.25) [W/m2K]  (27)√ 
where the velocity v is in units of [m/s]. Other sources also use 
a square-root dependence of h on airstream velocity [4,5]. We 

note that h has the same units as the interfacial conductance, 

and analogously, is also associated with a thickness (the “film” 
thickness) to calculate a relevant thermal conductivity. The film 

thickness is not used directly in our calculations, but it varies 

from about 3 cm in natural convection to less than 1 mm in 
high-velocity air flows [6]. 

Equation (27) lumps together the effects of natural (free) con-

vection, forced convection, and radiation. The velocity of “still” 
air, or natural convection, is taken as 0. The equation above 

does not take into account many factors, such as capacitor gravi-

metric orientation, the aspect ratio (D/L), the ambient and sur-
face temperatures, laminar versus turbulent flow, etc. The re-

sults when using (27) to predict heat rise ΔT are generally within 

about 20% of the measured value. For more exact solutions, 
we need to use heat transfer theory. 

Let us denote the unitless average Reynolds, Nusselt, and 

Rayleigh numbers as Re, Nu, and Ra, respectively. A subscript 
of D or L is generally used along with the numbers to indicate 

application to a cylinder or plate, respectively. Additionally, 

there is a unitless number Pr, the Prandtl number, which de-
scribes the medium. Pr is 2/3 for monatomic gasses, 5/7 for 

diatomic gasses, and has little temperature variation in our re-

gion of interest [7]. For airstream velocity v, cylinder diameter 
D, and kinematic viscosity ν, 

Re
D
 = vD/ν  (28) 

and 

1/2 1/3 5/8 4/50.62 Re
D
   Pr Re

DNu = 0.3 +  1 + ) ] (29)
D 2/3 1/4[ 1 + (0.4/Pr) ] [ (28,200 

and finally 

h = k Nu
D

/ D  (30) 

for a cylinder in cross-flow, where k is the thermal conductiv-
ity of air at the film temperature, taken as the average of the 

surface and airstream temperatures [8]. Notice that (29) con-

tradicts the assumption of a strictly square-root relationship 
between the convection coefficient and the airstream velocity. 

For natural (free) convection of aluminum electrolytic ca-

pacitors, 

h = 1.32 (ΔT/D)1/4 [W/m2K]  (31) 

where ΔT is the difference in temperature between the can sur-

face and the ambient air temperature in ºC, and D is the diam-

eter in meters [9]. 
Some general comments should be made about convection 

at this time. In general, the convection coefficient h is some-

what larger for small capacitors than for large ones, especially 
for free convection, as indicated in (31). Over the size range of 

aluminum electrolytic screw terminal capacitors, h may be up 

to 40% higher for the smallest caps (35 × 40 mm) than for the 
largest capacitors (90 × 220 mm), due to size alone. Also, h for 

forced air decreases slightly at elevated temperatures, due to 

the positive temperature coefficient of the ν factor, which in-
creases about 0.5%/ºC [2]. There is some gravitational depen-

dence, but it has been found by this author to be slight. 

Radiation, like convection, is also a surface-to-environment 
effect. The radiation heat transfer is dependent not only on the 

temperature difference between a surface and its environment, 

but also on the absolute temperatures involved. The surface 
“darkness” or emissivity ε is also important in radiation heat 

transfer. The power P
RAD

 transferred from a surface area A at 

temperature T
S
 to an environment at temperature T4 due to 

radiation is 

P
RAD

 = εσA ( T
S
4 ! T4 

4 )  (32) 

where ε is the surface emissivity (0-1) or “darkness” in the 

infrared region of the electromagnetic spectrum, and σ = 5.67 
× 10!8 W/m2K4 is the Stefan-Boltzmann constant [9]. For 

sleeved capacitors, ε = 0.85 is a good approximation [9]. For 
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bare capacitors, ε = 0.4 approximately [9]. Equation (32) may 

be put into a form equivalent to (26) by factoring out ΔT = ( T
S 

! T4), yielding 

P  = h AΔT  (33)
RAD RAD

where 

h  = εσ( T  + T  )( T 2 + T 2 ).  (34)
RAD S 4 S 4 

It can be seen from (34) that the radiation coefficient h
RAD

 in-
creases with both increasing surface and environmental tem-

peratures, and it increases slightly as the ΔT is increased while 

maintaining the same average temperature. This effect is often 
offset by the decrease in h (convection) with increasing tem-

perature when both radiation and convection are significant 

heat transfer modes. 
Radiation heat transfer can be significant compared to natu-

ral convection alone. Generally, the convection coefficient h 

for natural convection varies from about 5 to about 7 W/m2K, 
while h

RAD
 varies from about 5 to 9 W/m2K for capacitors of 

this size and temperature range. This gives a total h range for 

natural convection plus radiation of about 10 to 15 W/m2K, 
agreeing with (27). 

Fig. 10 compares the values of h found for actual capacitors 

under natural convection conditions versus the model result-
ing from adding (31) and (34). Fig 11 compares the values of h 

found for capacitors under forced convection conditions com-

pared to (27) and to (30) evaluated at two diameters. A new 
model is proposed as 

Free Convection Data and Model 

h
TOT 

= 5 + 17 (v + 0.1)0.66  (35) 

and this is also shown in Fig. 11. 

V. OTHER INTERNAL CONSIDERATIONS 

Now that we have discussed both radiation and natural con-

vection, we may consider their combined effects in radially cou-
pling the outer surface of the winding to the inside of the can 

wall. If we assume the outer surface of the winding of radius 

R
W
 and length L to be at absolute temperature T

W
 and to have 

an emissivity of ε
W
 = 0.85, and the inner surface of the can of 

radius R
C
 to be at absolute temperature T

C
 and have an emis-

sivity of ε
C
 = 0.40, we may calculate the transferred power via 

radiation [10] as

σA ( T
W

4 ! T
C
4 ) 

P
RAD

 = 1 1!ε R  .  (36)
C W+ε ε [ ]

W C R
C

We may also calculate the power transferred from the winding 
radially to the can wall via convection by using [11] 

k  = 0.386 k  [PrRa / (0.861+Pr)]1/4  (37)
EFF AIR C 

where K
AIR

 is the conductivity of still air, and 

-3/5 )5 ]Ra  = 8Ra [ ln(R  / R ) ]4 / [ L3 ( R -3/5 + R  (38)
C L C W C W 

where R
C
 is the inner radius of the can wall, R

W
 is the outer 

radius of the winding, L = R
C 
! R

W
 , and Ra

L
 is given by 

Total Heat Transfer Coefficient h vs Air Velocity 
Data vs Models 
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Eq. (30), D=1.4” 

Eq. (30), D=3.0” 
Eq. (35) 

Eq. (27) 
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Fig. 10. Data and model for total heat transfer coefficient h Fig. 11.  Data and model for total heat transfer coefficient h 
versus diameter for natural convection cooling. versus air velocity for convection cooling. 
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Ra
L
 = gL3/(T

F
να)  (39) 

where T
F
 is the absolute film temperature and α is the thermal 

diffusivity, which has about the same temperature coefficient 

as the kinematic viscosity ν. Equation (37) is recommended 
for use in the range of 102 < Ra

L
 < 107, but has been found by 

this author to give reasonably accurate estimates below the lower 

range. After examining the combined effects of (36) and (37) 
for capacitors of the sizes and temperatures under consider-

ation, this author suggests using a simplified combined radial 

transfer thermal conductivity of

σ R ( T 4 ! T 4 )ln(R  / R )
W W C C W

k
RWC

 = 0.030 + 1.3 1 1!ε R  .  (40) 
ε ε

C W[ + [ ]] ΔT 
W C R

C

Another postulated contributing factor to promoting radial 

heat transfer from the winding to the case as well as possibly 
increasing the effective axial thermal conductivity of the can 

wall is the so-called “heat pipe” effect, which is augmented 

heat transfer due to phase change of the electrolyte. The effect 
has a gravitational dependency, and is most effective when used 

with a fluid with a large latent heat of vaporization which evapo-

rates and condenses readily at the device and heatsink tem-
peratures, respectively. Heat pipes transfer heat most readily 

from a hot area (heat source) below a cooler area (environ-

ment), and can achieve extremely high effective thermal con-
ductivity, over 100 times that of silver [12]. Because this effect 

was potentially significant but was difficult to calculate, we 

decided to measure it experimentally using a thermal conduc-
tivity test stand similar to that of Fig. 4. We measured the can 

wall conductivity of a 3” diameter by 8.63” length, empty ca-

pacitor, sealed with a capacitor top and gasket. Then we punc-
tured the side wall, injected approximately 10 cm3 electrolyte, 

resealed the can, and measured the thermal conductivity again. 

We performed the same procedure for a capacitor that was empty 
except for a single turn of foil taped to form a hollow cylinder 

of approximate size 2.7” diameter by 5” length. We wrapped 

several turns of capacitor paper around the hollow form to pro-
duce a wick. We also measured capacitors of the same size 

with large and small winding diameters. To summarize the 

results, we found an improvement in axial conductivity of only 
10 - 25 % in this series of experiments. 

VI. OTHER EXTERNAL CONSIDERATIONS 

The test stand of Fig. 4 was used to measure interfacial con-

ductivities between the can and a heatsink. These data are sum-

marized in Table IV. The forces are based on the calculations 
from the torque applied to the 4 threaded rods used to clamp 

the capacitors to the chiller plate. 

It is postulated that the air trapped between the capacitor 
and the chiller plate gives rise to the largest effects that are 

observed. The flatness of the capacitor can bottom is also im-

portant and presumably interacts with the clamping technique 
employed. For example, if the capacitor bottom surface were 

concave, clamping via the can walls would not be as effective 

in driving out the air pockets as mounting via a stud in the 
center of the can bottom. 

Although a bare aluminum capacitor can offers the highest 

interfacial conductance from the can bottom to the heat sink, 
generally, electrical isolation is needed between these two sur-

faces. In this case, the best thermal interfacial conductance is 

achieved with a Sil-Pad Material or with thermal grease, along 
with flat surfaces and at least 20 pounds of force per square 

inch of can bottom area. 

VII. M ODEL RESULTS 

Early in this project we were using a finite-element analysis 
(FEA) software package which did not allow direct simulation 

of anisotropic material properties. Instead, a large number of 

individual paper and foil layers had to be drawn. A change in 
construction (paper thickness, capacitor length, etc.) usually 

required a complete redraw, taking two hours. Rerunning the 

software for a new condition took about 20 minutes. This meant 
we could run about 4 simulations per day. For these reasons, 

this author began investigating other alternatives and decided 

the best solution was to automatically draw the capacitor and 

Table IV 
Measured Thermal Contact Resistances 

3-inch Diameter Capacitor Bottom to Flat Plate 

Force (lbs) 
0 
90 
180 
360 

0 
90 
180 
360 

Sleeve/ 
End Disc 
1.62 ºC/W 
1.30 
1.22 
1.12 

Sleeve/ 
End Disc/ 
Sil Pad 
1.52 
1.20 
1.13 
1.07 

Bare 
Aluminum 
0.62 
0.33 
0.33 
0.30 

Bare Aluminum 
plus 
Sil Pad 
0.62 
0.48 
0.42 
0.40 
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solve the partial differential equations and boundary conditions 

with an FEA equation solver. 
The equation solver we use allows the capacitor to be “drawn” 

by connecting coordinates with line segments and arcs. Each 

component of the capacitor— the can, the bottom of the wind-
ing, the inactive turns (with no anode) at the arbor, the active 

winding, the top of the winding, the header, the header ribs, 

the dead space around the winding, the dead space in the ar-
bor, the sleeve, the end disc, etc., are all drawn symbolically 

with their dimensions as user-editable inputs in the text-based 

source file. Axial and radial conductivities are assigned to each 
of the components, as are any boundary conditions, such as 

flux at the outer edge of the sleeve, end discs, and top. The 

main advantage of this approach is the speed with which modi-
fications are made and evaluated. For example, to evaluate a 

sleeve thickness change, only the sleeve thickness dimension 

needs to be edited, as all other dimensions are adjusted auto-
matically, working in from the outside dimensions, since they 

are variables. This change is made in about 15 seconds, and 

the program generally executes in about 30 seconds. 
As other examples, the can bottom thickness, can wall thick-

ness, sleeve conductivity, dead turns thickness, arbor conduc-

tivity, header conductivity, air velocity, heat sink properties, 
etc. are all changed and evaluated within minutes instead of 

hours. The output is graphical, showing a color plot of the 

right half of a cross-section of the axisymmetric temperature 
distribution. See Fig. 12. 

The equations and measured values presented in this paper 

are used as inputs, and there appears to be good correlation 
between the model results and actual data. See Table V. These 

capacitors are all of extended cathode construction, but the 

model was found to fit well to capacitors of extended paper 
construction as well, as EC/EP (extended cathode / extended 

Fig. 12. Typical graphical output from thermal model. The 
isotherms are shown and are labeled and color-coded. 

This particular model has a heatsink, and 2 m/s moving air. 

paper) is programmed as a parameter within the simulation. 

The model takes into account the winding diameter, which var-
ies in this data from about 50% full to over 90% full. The model 

is generally within 10% of predicting the actual heat rise. The 

repeatability of the experimental data is not much less than 
10%, especially for low air velocity and/or low heat rise. Re-

finement of the model and of the measurement techniques con-

tinues. 
The relative benefit of various constructions are shown in 

Table VI. The base assumptions are a capacitor of can size 3” 

diameter by 5.625” length, dissipating 10 watts in a 45 ºC en-
vironment with an air flow velocity of 2 m/s. All of the EP 

simulations, including those of pitch-containing capacitors, 

assume the construction to be of the high-compression type, 
which gives a somewhat lower core-to-can-bottom thermal re-

sistance than would be expected from a typical uncompressed 

pitch design. The poorest construction from a thermal stand-
point is the pitchless construction with extended paper (NP/ 

Table V 
Measured versus Modeled Temperatures 

Miscellaneous Production Capacitors 
(Tc and Tb are core and bottom temperatures (ºC), respectively.) 

Measured Modeled 
D(in) L(in) Ta(ºC) v(m/s) P(W) Tc Tb Tc Tb 
2.0 3.1 24.6 1.0 5.0 45.6 41.0 45.3 39.5 
2.0 3.1 26.7 1.8 5.3 43.2 39.5 45.0 39.0 
2.0 3.1 27.3 3.6 5.5 41.6 35.9 42.9 36.5 
2.5 5.6 27.1 0.76 9.1 52.0 44.4 51.0 42.5 
2.5 5.6 27.6 1.8 9.4 48.5 39.9 47.5 38.5 
2.5 5.6 28.1 3.6 9.5 46.8 37.7 45.3 36.5 
2.5 5.6 27.8 0.76 4.3 40.6 38.3 39.3 35.1 
2.5 5.6 29.4 1.8 4.4 39.3 36.5 38.8 34.5 
2.5 5.6 30.2 3.6 4.4 38.9 35.8 38.3 33.9 
2.0 3.1 59.6 0.76 3.8 76.8 73.5 76.7 72.5 
2.0 3.1 58.8 1.0 3.8 76.6 70.9 75.0 71.0 
3.0 5.6 32.0 1.0 7.7 46.3 43.0 47.0 41.5 
3.0 5.6 29.9 1.8 8.0 42.1 37.6 43.6 38.0 
3.0 5.6 32.3 3.3 7.9 42.5 38.2 44.0 38.5 
2.0 3.1 58.8 0.60 3.8 78.2 75.0 77.0 72.5 
3.0 5.6 64.6 0.90 2.2 69.2 68.1 69.5 67.4 
2.5 5.6 30.2 0.76 8.4 54.1 46.4 52.1 44.0 
2.5 5.6 29.0 1.5 9.0 49.3 40.5 48.8 40.5 
2.5 5.6 30.1 3.0 9.3 48.0 38.9 47.5 38.5 
3.0 5.6 67.3 1.0 4.9 76.9 74.0 78.0 73.5 
2.5 4.1 31.0 1.0 5.7 46.4 43.6 46.3 42.0 
2.5 4.1 31.8 1.8 5.8 43.7 40.9 45.1 40.5 
2.5 4.1 33.0 3.6 5.8 42.2 40.1 44.0 39.5 
3.0 4.1 27.0 0.76 6.4 44.5 40.2 44.1 38.0 
3.0 4.1 30.0 1.8 6.4 43.6 39.0 43.8 38.0 
3.0 4.1 28.9 3.6 6.6 41.1 36.3 40.9 35.0 
1.4 4.6 24.8 5.1 5.3 41.6 33.1 40.1 33.0 
1.4 4.1 25.0 5.1 4.1 38.2 33.0 37.6 32.0 
2.5 4.1 25.4 5.1 4.6 32.6 29.1 33.7 29.7 
3.0 4.1 25.8 5.1 5.9 37.5 31.7 37.5 30.0 
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EP). The core temperature in this case is 73.1 ºC. Adding 

enough pitch to fill the entire area outside the winding lowers 
this by 5 ºC, adding 40% to the life. However, a pitchless ex-

tended cathode design drops the core an additional 7 ºC to 61.4 

ºC. No other construction changes, including doubling the can 
bottom thickness, wall thickness, arbor rod, etc. are of much 

help, with the exception of the core winding [13] technique, 

which allows the pitch/EP design performance to approach that 
of the pitchless/EC design. Although more expensive than ex-

tended cathode and not always feasible due to volume restric-

tions, this technique is useful in improving performance in ca-
pacitor designs that would normally have empty space around 

the winding. This space is instead occupied by additional wind-

ing area by first winding many “dead” turns of cathode and 
paper at the beginning of the winding process before introduc-

ing the anode. The core winding technique is successful due 

not as much by having a conductive core as by moving the 
active, power-generating area outward to an area of larger ra-

dius, and by placing the outer area of the winding in closer 

radial proximity to the can wall. If a core winding is combined 
with a high-compression extended cathode, the core tempera-

Table VI 
Modeled Temperatures 

Various Capacitor Constructions 
Construction Tcore Tbottom Tside 
P/EP 68.1 54.0 52.0 
NP/EP 73.1 55.0 52.0 
NP/EC 61.4 56.5 52.5 
NP/AR/EC 61.2 56.5 51.5 
P/CW/EP 62.2 53.0 52.5 
NP/CW/EC 57.5 54.0 52.0 
NP/EC/HS 54.4 49.0 49.0 
NP/EP/HS 68.4 52.0 51.0 
NP/EP/CW/HS 59.9 51.5 51.5 
NP/EC/CW/HS 56.0 52.2 51.0 
NP/EC/DB 61.0 56.0 51.5 
NP/EC/DB/DW 59.8 54.5 52.5 
NP/EC/DB/DW/AT 58.8 54.0 52.0 

Legend 
P=10 W, D=3.0”, L=5.63”, Winding D=2.55”, Ta = 45 ºC, v=2 m/s 
EC— Extended Cathode 
EP— Extended Paper 
HS— Heat Sink aty capacitor bottom, ID=1.2”, OD=3.0”, 

Theta = 1.0 ºC/W plus 1.0 ºC/W contact resistance 
CW— Core Winding: Inactive 1.4” inactive diameter (paper and 

cathode only). Winding OD=2.90” 
P— Outside of winding is filled completely with pitch 
NP— Contains no pitch. Outside of winding is empty. 
AR— Aluminum arbor rod. Diameter = 0.3”. 
AT— Aluminum top. 
DW— Double the can wall thickness. 
DB— Double the can bottom thickness. 

ture can be further reduced by 4-5 ºC versus either technique 

alone. 
Additional improvement in capacitor performance can be 

achieved through the use of a heat sink, especially when the 

capacitor construction is extended cathode, the thermal con-
tact is intimate, and the heat sink thermal resistance is low. 

VIII. CONCLUSIONS 

We have explored the issues and theory behind thermal mod-

eling of aluminum electrolytic capacitors and have developed 
and presented a model that has simulation and predictive value. 
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